
Modular ODE Solvers



Modular Solver for a Single, 
1st Order ODE



Euler Integration Scheme

This code was presented in the previous 
chapter. It performs an Euler integration of 
the exponential growth equation 

.dy/dt = ay

exponential 
growth 

derivative

pros:  This example is simple, linear and 
easy to understand.

cons:  This approach works less well  for 
more complex ODEs with higher-order 
integration schemes.



Break Code into Functions

Functions make your code modular and 
easy to modify.

exponential 
growth 
derivative

Euler Function:  Perform the numerical 
integration for a given ODE and return the 
solution y(t)

Derivative Function:  Calculate the 
derivative  given the model 
parameters.

dy/dt



Derivative function 
Calculates and returns the derivative 

 for first-order ODE: 

 

• Passed parameters: 
t = time 
y = dependent variable 
param1 = parameter 
param2 = another parameter 

• Returned value: 
derivative dy/dt

f(y, t)
dy
dt

= f(y, t)

Derivative 
Function

t

y

param2

f(y,t)

Inputs Output

param1

. . . 



Example:  Exponential Growth Function

Derivative function 
Calculates and returns the 
derivative  for the first-
order ODE: 

 

• Passed parameters: 
t = time 
y = dependent variable 
a = growth rate parameter 

• Returned value: 
derivative dy/dt

f(y, t)

dy
dt

= ay = f(y, t)



Euler function 
Performs the numerical integration 
using Euler’s method and a derivative 
function. 
• Passed parameters: 

deriv = derivative function 
y0 = initial condition 
tmax = maximum time 
dt = time step 
params = array of parameters  

• Returned value: 
t = array of times 
y = array containing solution

Euler 
Function

tmax

y0

params

t

Inputs Outputs

deriv

dt y



Euler function 
Performs the numerical integration 
using Euler’s method and a derivative 
function. 
• Passed parameters: 

deriv = derivative function 
y0 = initial condition 
tmax = maximum time 
dt = time step 
params = array of parameters  

• Returned value: 
t = array of times 
y = array containing solution

don’t forget the  *



Define parameters

Call Euler Function

Define derivative function

Plot solution

Put it all together:  
Derivative and Euler 
Functions in action



Put it all together:  
Derivative and Euler 
Functions in action

pass deriv_exp() function 
defining the ODE to integrate

get solution (t and y)

call to Euler() function



Summary
The modular approach to numerical integration code has the following advantages: 

• The Euler() function can be used to solve any first-order ODE using the Euler 
method. This function does not need to be changed when  a new ODE is solved. 

• The derivs_exp() function contains all the information about the ODE being 
solved. It can be used with a different numerical integration solver (e.g. midpoint, Runga-
Kutta, etc.)



Modular Solver for a System 
of 1st Order ODEs



PHYS 365 - ASTROPHYSICS

All 2nd Order ODEs Can be Written as a System of Two, 
1st-Order ODEs

For example, we can write  as a system of two 1st order ODEs:F = ma

dx
dt

= v

dv
dt

= a(x, v, t) =
F(x, v, t)

m
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Writing a System of ODEs as a Generalized Vector Equation
We introduce this approach through an example.  Let’s solve the simple 
harmonic oscillator problem:

dx
dt

= v
dv
dt

= − (k/m)x

We write this 2nd-order ODE as a system of coupled 1st-order ODEs:

F = − kx d2x
dt2

= −
k
m

x

We want to solve for the variables  and .x(t) v(t)
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Writing a System of ODEs as a Generalized Vector Equation

Introduce a generalized vector  whose components are  and , where 
 and , i.e.

⃗y x v
y(0)(t) = x(t) y(1)(t) = v(t)

⃗y = (y(0)(t)
y(1)(t)) = (x(t)

v(t)) .

dx
dt

= v
dv
dt

= − (k/m)x

Our system of coupled 1st-order ODEs

may be written in terns of  and  asy0 y1

dy(0)

dt
= y(1) dy(1)

dt
= − (k/m)y(0) .
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Writing a System of ODEs as a Generalized Vector Equation

The introduction of the generalized vector  allows us to write 
our system of ODEs as a single differential equation:

⃗y = (y(0), y(1))

d ⃗y
dt

= ⃗a( ⃗y, t)

We can solve this ODE using Euler or any other method.

⃗a( ⃗y, t) = ( y(1)

−(k/m)y(0)) .

where

and⃗y = (y(0)

y(1))
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Writing a System of ODEs as a Generalized Vector Equation

Applying the Euler method to solve this system gives

⃗yn+1 = ⃗yn + ⃗anΔt

In component form, this is equivalent to:

(
y(0)

n+1

y(1)
n+1) = (y(0)

n

y(1)
n ) + ( y(1)

n

−(k/m)y(0)
n ) Δt

or, n terms of  and x v

(xn+1
vn+1) = (xn

vn) + ( vn

−(k/m)xn) Δt

This is amazing!  
We can solve a 
system of potentially 
hundreds of ODEs 
using a single Euler 
update equation!



Arrays used in the Multi-Variable Code

Initial conditions (1x2 array): y0 = x0 v0

Solution (Nx2 array): y = x[0] v[0]

x[1] v[1]

x[2] v[2]

x[3] v[3]

x[4] v[4]

derivs_sh0() returns 1x2 array: dxdt dvdt

x = y[:,0]

v = y[:,1]



Multi-Variable Derivative Function

y is a 1x2 array containing x and v

y = x v

derivs_sho returns a 1x2 array 
containing derivatives  dx/dt and 
dv/dt:

dxdt dydt



Multi-Variable Euler Function

This line determines the number of 
variables in the system by checking to 
see if the initial conditions variable y0 
is a float or an array. 

If y0 is a float, there’s only a single 
variable. 

If y0 is a NumPy array, the number of  
variables = the number of elements in 
y0.



Multi-Variable Euler Function

y is a (N) (nvar) array, with the 
columns storing the solution for 
each variable.

×

If y is a 2D array, we must use 
slicing to copy the initial condition 
array y0 to the top row of the 
solution array y. If y is a 1D array, 
we just set y[0] to the initial value 
y0.



Multi-Variable Euler Function

The loop implementing the Euler 
method for our system of ODEs 
looks exactly like the loop when we 
had only a single ODE.



Put it all together:  
Derivative and Euler 
Functions in action

We have to extract the solution for 
each variable from the returned y 
array.

Initial conditions are now 
stored in a 1 2 array×


