
Modular ODE Solvers

Modular Solver for a Single,
1st Order ODE

Euler Integration Scheme

This code was presented in the previous
chapter. It performs an Euler integration of
the exponential growth equation

.dy/dt = ay

exponential
growth

derivative

pros: This example is simple, linear and
easy to understand.

cons: This approach works less well for
more complex ODEs with higher-order
integration schemes.

Break Code into Functions

Functions make your code modular and
easy to modify.

exponential
growth
derivative

Euler Function: Perform the numerical
integration for a given ODE and return the
solution y(t)

Derivative Function: Calculate the
derivative given the model
parameters.

dy/dt

Derivative function
Calculates and returns the derivative

 for first-order ODE:

• Passed parameters:
t = time
y = dependent variable
param1 = parameter
param2 = another parameter

• Returned value:
derivative dy/dt

f(y, t)
dy
dt

= f(y, t)

Derivative
Function

t

y

param2

f(y,t)

Inputs Output

param1

. . .

Example: Exponential Growth Function

Derivative function
Calculates and returns the
derivative for the first-
order ODE:

• Passed parameters:
t = time
y = dependent variable
a = growth rate parameter

• Returned value:
derivative dy/dt

f(y, t)

dy
dt

= ay = f(y, t)

Euler function
Performs the numerical integration
using Euler’s method and a derivative
function.
• Passed parameters:

deriv = derivative function
y0 = initial condition
tmax = maximum time
dt = time step
params = array of parameters

• Returned value:
t = array of times
y = array containing solution

Euler
Function

tmax

y0

params

t

Inputs Outputs

deriv

dt y

Euler function
Performs the numerical integration
using Euler’s method and a derivative
function.
• Passed parameters:

deriv = derivative function
y0 = initial condition
tmax = maximum time
dt = time step
params = array of parameters

• Returned value:
t = array of times
y = array containing solution

don’t forget the *

Define parameters

Call Euler Function

Define derivative function

Plot solution

Put it all together:
Derivative and Euler
Functions in action

Put it all together:
Derivative and Euler
Functions in action

pass deriv_exp() function
defining the ODE to integrate

get solution (t and y)

call to Euler() function

Summary
The modular approach to numerical integration code has the following advantages:

• The Euler() function can be used to solve any first-order ODE using the Euler
method. This function does not need to be changed when a new ODE is solved.

• The derivs_exp() function contains all the information about the ODE being
solved. It can be used with a different numerical integration solver (e.g. midpoint, Runga-
Kutta, etc.)

Modular Solver for a System
of 1st Order ODEs

PHYS 365 - ASTROPHYSICS

All 2nd Order ODEs Can be Written as a System of Two,
1st-Order ODEs

For example, we can write as a system of two 1st order ODEs:F = ma

dx
dt

= v

dv
dt

= a(x, v, t) =
F(x, v, t)

m

PHYS 365 - ASTROPHYSICS

Writing a System of ODEs as a Generalized Vector Equation
We introduce this approach through an example. Let’s solve the simple
harmonic oscillator problem:

dx
dt

= v
dv
dt

= − (k/m)x

We write this 2nd-order ODE as a system of coupled 1st-order ODEs:

F = − kx d2x
dt2

= −
k
m

x

We want to solve for the variables and .x(t) v(t)

PHYS 365 - ASTROPHYSICS

Writing a System of ODEs as a Generalized Vector Equation

Introduce a generalized vector whose components are and , where
 and , i.e.

⃗y x v
y(0)(t) = x(t) y(1)(t) = v(t)

⃗y = (y(0)(t)
y(1)(t)) = (x(t)

v(t)) .

dx
dt

= v
dv
dt

= − (k/m)x

Our system of coupled 1st-order ODEs

may be written in terns of and asy0 y1

dy(0)

dt
= y(1) dy(1)

dt
= − (k/m)y(0) .

PHYS 365 - ASTROPHYSICS

Writing a System of ODEs as a Generalized Vector Equation

The introduction of the generalized vector allows us to write
our system of ODEs as a single differential equation:

⃗y = (y(0), y(1))

d ⃗y
dt

= ⃗a(⃗y, t)

We can solve this ODE using Euler or any other method.

⃗a(⃗y, t) = (y(1)

−(k/m)y(0)) .

where

and⃗y = (y(0)

y(1))

PHYS 365 - ASTROPHYSICS

Writing a System of ODEs as a Generalized Vector Equation

Applying the Euler method to solve this system gives

⃗yn+1 = ⃗yn + ⃗anΔt

In component form, this is equivalent to:

(
y(0)

n+1

y(1)
n+1) = (y(0)

n

y(1)
n) + (y(1)

n

−(k/m)y(0)
n) Δt

or, n terms of and x v

(xn+1
vn+1) = (xn

vn) + (vn

−(k/m)xn) Δt

This is amazing!
We can solve a
system of potentially
hundreds of ODEs
using a single Euler
update equation!

Arrays used in the Multi-Variable Code

Initial conditions (1x2 array): y0 = x0 v0

Solution (Nx2 array): y = x[0] v[0]

x[1] v[1]

x[2] v[2]

x[3] v[3]

x[4] v[4]

derivs_sh0() returns 1x2 array: dxdt dvdt

x = y[:,0]

v = y[:,1]

Multi-Variable Derivative Function

y is a 1x2 array containing x and v

y = x v

derivs_sho returns a 1x2 array
containing derivatives dx/dt and
dv/dt:

dxdt dydt

Multi-Variable Euler Function

This line determines the number of
variables in the system by checking to
see if the initial conditions variable y0
is a float or an array.

If y0 is a float, there’s only a single
variable.

If y0 is a NumPy array, the number of
variables = the number of elements in
y0.

Multi-Variable Euler Function

y is a (N) (nvar) array, with the
columns storing the solution for
each variable.

×

If y is a 2D array, we must use
slicing to copy the initial condition
array y0 to the top row of the
solution array y. If y is a 1D array,
we just set y[0] to the initial value
y0.

Multi-Variable Euler Function

The loop implementing the Euler
method for our system of ODEs
looks exactly like the loop when we
had only a single ODE.

Put it all together:
Derivative and Euler
Functions in action

We have to extract the solution for
each variable from the returned y
array.

Initial conditions are now
stored in a 1 2 array×

