Modular ODE Solvers

Modular Solver for a Single,
1st Order ODE

Euler Integration Scheme

This code was presented in the previous
chapter. It performs an Euler integration of
the exponential growth equation

dy/dt = ay.

pros: T his example is simple, linear and
easy to understand.

cons: [his approach works less well for
more complex ODEs with higher-order

import numpy as np
import matplotlib.pyplot as plt

HE# A HE Parameters ######H#Y

a = —0.2 # decay constant
tmax = 100 # maximum time

dt =1 # time step

yo =1 # initial value of y

#H##HHA#HE Create Arrays ###HHA##H#

N = int(tmax/dt)+1 # number of steps

y = np.zeros(N) # array to store y values
t = np.zeros(N) # array to store times
y[0] = y@ # assign initial value

integrati()n schemes. HH#aaa#### Euler Inteqration ########H
exponential for n in range(N-1):

Erowth =3P f = axy[n] # derivative

derivative y[n+1l] = y[n] + fxdt # Euler rule

t[n+1] t[n] + dt

Break Code into Functions

Functions make your code modular and
easy to modify.

Euler Function: Perform the numerical
iIntegration for a given ODE and return the

solution y(7)

Derivative Function: Calculate the
derivative dy/dt given the model
parameters.

N

import numpy as np
import matplotlib.pyplot as plt

HE###HEHAHE Parameters ###HHH#THT

a = -0.2 # decay constant
tmax = 100 # maximum time

dt =1 # time step

yo =1 # initial value of y

#HH##HHHH Create Arrays #####H##H#

N = int(tmax/dt)+1 # number of steps

y = np.zeros(N) # array to store y values
t = np.zeros(N) # array to store times
y[0] = yo # assign initial value

AR Euler Integration ########H

for n in range(N-1):

f = axy[n] # derivative

yIn+1] = y[n] + fxdt # Euler rule
t[n+l1l] = t[n] + dt

Derivative function
Calculates and returns the derivative

(v, t) for first-order ODE: Inputs Output
dy
L d— 1
- SO0

Derivative

* Passed parameters: Function

O t=time
O y = dependent variable param2
O paraml = parameter
O param2 = another parameter

* Returned value:
o derivative dy/dt

Example: Exponential Growth Function

Derivative function
Calculates and returns the HH##H###EE Derivative Function ####H##H#H#HE

derivative f(y, t) for the first-
order ODE:

dy dydt = axy

E = ay = f(y, 1) return dydt

def deriv_exp(t, y, a):

* Passed parameters:

o t =time

o0 y =dependent variable

o0 a = growth rate parameter
* Returned value:

o derivative dy/dt

Euler function
Performs the numerical integration
using Euler's method and a derivative
function.
* Passed parameters:

o deriv = derivative function

o y0 =initial condition

O tmax = maximumtime

o dt =time step

O params = array of parameters
* Returned value:

o t =array oftimes

O y = array containing solution

Inputs Outputs
derlv
yO
= t
tmax —}
Y
dt
params

Euler function

Performs the numerical integration
using Euler's method and a derivative

HH#A##RH##H Euler Integration #####H###

def Euler(deriv, y@, tmax, dt, params):

function. HH#H#H###H Create Arrays #H#H#H#HH#H#HH#
* Passed parameters: N = int(tmax/dt)+1 # number of steps in simulation
o deri1iv =derivative function y = np.zeros(N) # array to store y values
o o t = np.zeros(N) # array to store times
o y0 =initial condition
0 tmax = maximum time y[0] = yo # assign initial value
o dt =time step ####H###E Loop to implement the Euler update rule ###4
O params = array of parameters for n in range(N-1):
e Returned value: f = deriv(t[n], y[nl], *xparams) # use "x" to unpack
- y[n+1l] = y[n] + fxdt
o t =array oftimes t[n+1] = t[n] + dt

O y = array containing solution return t, v

don't forget the *

Put it all together:
Derivative and Euler
Functions in action

Define derivative function

v

Define parameters

Call Euler Function

v

Plot solution

Put it all together: HHHHAAAAE Parameters #HHHHHHAH
Derivative and Euler

a = 0.2 # decay constant
Functions in action tmax = 100 # maximum time
dt = 0.5 # time step
yo =1 # initial value of y
params = [a] # bundle parameters in array
call to Euler() function
#HHHHAAE, Perform Euler Integration #########
get solution (t and y)
t, y = Euler(deriv_exp, y0, tmax, dt, params)

pass deriv_exp() function

| | #Ha#aHaHE Plot Solution #########
defining the ODE to integrate

plt.plot(t, y, label='Euler"')

Summary

The modular approach to numerical integration code has the following advantages:
 The Euler () function can be used to solve any first-order ODE using the Euler
method. This function does not need to be changed when a new ODE is solved.
 Thederivs exp() functioncontains allthe information about the ODE being
solved. It can be used with a different numerical integration solver (e.g. midpoint, Runga-
Kutta, etc.)

Modular Solver for a System
of 1st Order ODEs

All 2nd Order ODEs Can be Written as a System of Two,
1st-Order ODEs

For example, we can write FF = ma as a system of two 1st order ODEs:
dx
— =V
dt

dv F(x,v,1)
— =alx,v,1) =

dt m

PHYS 365 - ASTROPHYSICS

Writing a System of ODEs as a Generalized Vector Equation

We Introduce this approach through an example. Let’s solve the simple
harmonic oscillator problem:

d*x k
= — —X

F=—kx —
dt? m

We write this 2nd-order ODE as a system of coupled 1st-order ODEs:

dx dv
— = — = — (k/m)x
dt dt

We want to solve for the variables x(¢) and v(1).

PHYS 365 - ASTROPHYSICS

Writing a System of ODEs as a Generalized Vector Equation

Introduce a generalized vector y whose components are x and v, where
y(o)(f) = x(t) and y(l)(t) = 1(?), i.e.

s (YO (x(t))
y () @)
Our system of coupled 1st-order ODEs

dx dv
— = — = — (k/m)x
dt dt

may be written in terns of y, and y; as

v AdvD
=y (D — — — (km)y©.

dt dt

PHYS 365 - ASTROPHYSICS

Writing a System of ODEs as a Generalized Vector Equation

The introduction of the generalized vector y = (y(o),y(l)) allows us to write
our system of ODEs as a single differential equation:

d? - —>
— =a(y,t
= (v, 1)

(0) (1)
y = and a(y,t) = ,
<y(1)> (—(k/m)y(0)>

We can solve this ODE using Euler or any other method.

where

PHYS 365 - ASTROPHYSICS

Applying the Euler method to solve this system gives
Vil =V, + QA1 Cr—

In component form, this is equivalent to:

Writing a System of ODEs as a Generalized Vector Equation

This is amazing!

We can solve a
system of potentially
hundreds of ODEs
using a single Euler
update equation!

yr(zg)r)l y’g()) y’gl)

o]\)T N
yn-|-1 Yn _(k/m)yn
xn+ﬁ_ xn Vn A
Vin+1 B Vn N o (k/ WL))Cn t

or, n terms of x and v

PHYS 365 - ASTROPHYSICS

Arrays used in the Multi-Variable Code

Initial conditions (1x2 array): YyO

Solution (Nx2 array): y

derivs shO () returns 1x2 array:

x0

vO

X[0]

v[0]

X[1]

v[i1l]

X[2]

v[i2]

X[3]

v[3]

X[4]

v[4]

dxdt

dvdt

y[:,0]
yl[:,1]

Multi-Variable Derivative Function

#H###HE##E Derivative Function ######HI#H#
#

This function returns the derivatives for the
Simple Harmonic Oscillator ODE

y Is a 1x2 array containing x and v def deriv_sho(t, y, m, Kk):
Y = = v # extract variables from y array
X = yl[0o] # position
v = y[1] # velocity

calculate derivatives
dxdt = v

derivs sho returns a 1x2 array
— dvdt = —-k/mxx

containing derivatives dx/dt and

dv/dt: \ # return derivatives in a numpy array
dxdt dydt return np.array([dxdt, dvdt])

#H##H##E Multi-Variable Euler Integration #########

Multi-Variable Euler Function

def Euler_Vec(deriv, y@, tmax, dt, params):

. . . #Hi##t#HR#E Create Arrays ##t###H#H###
This line determines the number of g

variables in the system by Checking to # determine the number of variables in the system from initial
see if the initial conditions variable y0 =% "ar = 1 if not isinstance(y0, np.ndarray) else yo.size
IS a float or an array. N = int(tmax/dt)+1 # number of steps in simulation
y = np.zeros((N,nvar)) # array to store y values
IfyO is 5 float. there’s only a single t = np.zeros(N) # array to store times
variable. if nvar ==
y[@] = yoO # assign initial value 1f single var

It yO is a NumPy array, the number of else: - |

bl th b £ ol . y[0,:] = yo # assign vector initial values if mt
variaples = e numpper or eiements In

YO Hi######E# Loop to implement the Euler update rule #########
for n in range(N-1):

f = deriv(tin], yInl, *params)

yIn+l] = y[n] + fxdt

t[n+1] = t[n] + dt

return t, vy

#H##H##E Multi-Variable Euler Integration #########

Multi-Variable Euler Function

def Euler_Vec(deriv, y@, tmax, dt, params):

y is a (N)X(nvar) array, with the
columns storing the solution for =
each variable.

If y i1s a 2D array, we must use /
slicing to copy the initial condition

array y0 to the top row of the
solution array y. If yis a1D array,
we just set y[0] to the initial value

yO.

H###HH## Create Arrays #######H##

determine the number of variables in the system from initial
nvar = 1 if not isinstance(y®, np.ndarray) else y@.size

N = int(tmax/dt)+1 # number of steps in simulation
y = np.zeros((N,nvar)) # array to store y values
t = np.zeros(N) # array to store times
if nvar ==
y[@] = yoO # assign initial value 1f single var
else:
y[0,:] = yoO # assign vector initial values if mu

Hi######E# Loop to implement the Euler update rule #########

for n in range(N-1):
f = deriv(tin], yInl, *params)
yin+l] = y[n] + fxdt
t[n+1] = t[n] + dt

return t, vy

Multi-Variable Euler Function

The loop implementing the Euler
method for our system of ODEs
looks exactly like the loop when we
had only a single ODE.

HE##EHA##H Multi-Variable Euler Integration #########

def Euler_Vec(deriv, y@, tmax, dt, params):

—

#H###HH## Create Arrays #########

determine the number of variables in the system from initial
nvar = 1 if not isinstance(y®, np.ndarray) else y@.size

N = int(tmax/dt)+1 # number of steps in simulation
y = np.zeros((N,nvar)) # array to store y values
t = np.zeros(N) # array to store times
if nvar == 1:
y[0] = yoO # assign initial value if single var
else:
ylo,:] = vyo # assign vector initial values 1f mL

Hi######E# Loop to implement the Euler update rule #########

for n in range(N-1):
f = deriv(tin], yInl, *params)
yin+l] = y[n] + fxdt
tn+l] = t[n] + dt

return t, vy

Put it all together:
Derivative and Euler
Functions in action

Initial conditions are now

stored in a1X2 array >

We have to extract the solution for

: - >
each variable fromthe returned y
array.

import numpy as np
import matplotlib.pyplot as plt

#H#H#F###H#E Parameters ###H###H#H##

m =1 # mass

K =1 # spring constant

tmax = 10 # maximum time

dt = 0.001 # time step

x0 =1 # initial position

v =0 # initial velocity

params = np.array([m,k]) # bundle parameters together

y@ = np.array([x0,v0]) # bundle initial conditions

#H######H Perform Euler Integration #####H##H##

t, y = Euler_Vec(deriv_sho, y@, tmax, dt, params)
x =vyl[:,0] # extract positions
v =yl[:,1] # extract velocities

#H#H#HA#R Plot Solution ###H#AHH#HH

plt.plot(t, x, label='x") # plot position

